If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100n^2-144=0
a = 100; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·100·(-144)
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{57600}=240$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-240}{2*100}=\frac{-240}{200} =-1+1/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+240}{2*100}=\frac{240}{200} =1+1/5 $
| 5+9x-4=2x-9 | | −83=b.4 | | 9q-10q-(-7)=-12 | | 4x+3=x=+3.3 | | 0.50x+0.05(10-x)=0.10(-40) | | -3n+6=18 | | 14k-3k-10k+3=16 | | 18g-20+g=1 | | 2-(-3a-8=1 | | -2x-7=x−37 | | 3x+17+7x-15=(3x+17)2 | | 180=w+38 | | -4.3g=25.8g= | | -13h+10h-(-20)=-13 | | 5-4(x+2)=3x+2(5x-1) | | 3/5e-6+2/5(e-10)-7=3 | | 8k-7=3(12k-6) | | 1/6y+1/2=5/7 | | -10j+-16=4 | | -9n=-9n-2 | | 8(4k–4)=5k–32 | | -2x2-2x+40=0 | | 2x-8=6x-15 | | p+2p-p+1=19 | | (3x9)x1=3x9 | | 17c-9=5(8+2c) | | x÷16=3 | | 3(x–1)=9+x | | m^2=16-16m | | 221/12=-8x+3/2x | | 11y+29=106 | | p-6/3=1 |